Putting patients first

Patient
Most cancer treatments involve complex surgeries, toxic drugs, or taxing radiation, but there are other answers to this devastating disease. Prof. Pierre Schembri-Wismayer is developing a vaccine that works by harnessing our body’s own immune response and directing it towards the threat, fighting the disease as an inside job. Words by Gail Sant. 
Prof. Pierre Schembri-Wismayer

Our bodies produce billions of cells every day. With such industrial production rates, it’s entirely likely that a mistake or two are made along the way. Cancer cells are those mistakes—faulty mutants. 

Humans are also equipped with mechanisms that allow them to recognise cancer cells and get rid of them, but there can be trouble when distinguishing ‘bad’ from ‘good’. Part and parcel of cancer is that it compromises the immune system to ‘escape’ our ‘guards’. This precious time during which the body fails to recognise the mutants is the golden opportunity for cancer cells to multiply and thrive. And as the cancer grows, so do the problems that come with it.

Despite the varied types of cancers in existence, treatment usually entails surgery and chemotherapy. But the risks and side-effects that come with them are heart-wrenching. 

But what if a vaccine can stop cancer in its tracks? Prof. Pierre Schembri-Wismayer and his team are working on a type of immunotherapy that enables the body to recognise the invading cancer sooner, directing the attack as a result.

How it works

Vaccines work by triggering an immune response in the body. These cancer vaccines developed by Schembri-Wismayer work the same way. He collects a piece of the cancerous tumour and denatures (a process not unlike cooking or boiling) it in formalin, which modifies its shape, making it easier for the body to recognise as a foreign body. The body can then remove it.

Our bodies have a naturally low tolerance when it comes to foreign entities, so when a vaccine injects the cooked tumour, the body recognises it and ambushes both the injected and the original cancer present in the patient, ‘engendering a stronger immune response’.

Inspired by a Japanese research paper, yet baffled by its lack of recognition, Schembri Wismayer modified the method outlined there and created his own version of the vaccine to accommodate his first patients: a pair of pet rats.

The founding pets

Schembri-Wismayer had the perfect opportunity to test the potential cancer treatment when a student’s pet rats fell ill. Their owner mistakenly overfed the rats to such an extent that they became obese. ‘The rats became square-shaped,’ Schembri-Wismayer notes. With the increase in body fat, their oestrogen rose too—a female sex hormone that increases the risk of breast cancer. As a result, both rats developed the disease, and even showed metastasis in both underarms, which also happens in humans. Obesity is linked to cancer in many animals.

Within days, Schembri-Wismayer took samples from the rats and produced a tailor-made vaccine for each rat. Two weeks after their treatment, the rats’ owner informed him that they were in a lot of pain. ‘But tumours don’t hurt,’ Schembri-Wismayer explains.

An operation on the rats revealed that the tumours had broken down (were full of dead cells). This confirmed that the rats’ pain was actually stemming from the inflammation caused by the vaccine itself.

Physical anguish aside, this was a good sign, an indication that the body was fighting back. In the end, the tumours burst, necrosed, and died. The rats beat the cancer, and thus a new research project found its beginnings.

Pre-treatment (left) and post-treatment (right). The rat’s breast cancer had already metastasised and spread. After the vaccine, the tumours burst, necroses and died. (Low power and high power views respectively).

Hurdles ahead

Having had such promising results, and with ethical approval from the local Animal Welfare Council as a therapeutic option, Schembri-Wismayer turned his attention to a group of animals which would benefit a lot from such vaccines—people’s pets.

‘In many cases, once a dog or a cat gets cancer, there’s not much you can do if it spreads,’ says Schembri-Wismayer. His vaccines can offer new hope to pet owners when cancer strikes and the only option is to put them down. And so it has.

With consent from owners and vets, Schembri-Wismayer offered the therapy to cats and dogs of different breeds. The types of cancer varied, as were their progressions, and so the results were just as jumbled. The treatment was successful for some, but not all. Considering this treatment is still in its early days, an element of trial-and-error puts some animals at a disadvantage, particularly those who are very ill when the disease is in its last stages. It should also be mentioned that this research project was held back by challenging communication difficulties between everyone involved. ‘Different priorities made the process more difficult than it had to be,’ Schembri-Wismayer notes. The ideal scenario would see him and the veterinarian working hand-in-hand to follow up on the animals and their response to the treatment using blood tests and ultrasound.

That said, the potential of the treatment isn’t limited to individual successes. Each pet-patient contributed to a better understanding of the treatment, especially when owners were immensely helpful and allowed the veterinary surgeon to provide the team with a piece of the tumour after treatment (even if the pet was put down). With that in mind, the prospects of this type of immunotherapy are promising to say the least.

Moving onto human trials

While the vaccine’s promising results might be a step in the right direction, the cure for cancer doesn’t seem to be in the near future. The ongoing animal treatments are providing useful information, but the move to human trials is gruelling. Testing out new therapies comes with storey-high hurdles, including financial ones, that need to be overcome.

The reality is that this kind of therapy would work best as a first response (or after debulking surgery). Because the more widespread the cancer, the bigger the immune response the vaccines create. And ‘if a reaction is strong enough, it might be enough to kill the patient,’ Schembri-Wismayer explains. But medicine works with a set of rules and best practices. Doctors are obliged to try what’s known to work first before moving onto lesser-known experimental drugs. This fact is a challenge. Despite the hurdle, Schembri-Wismayer is certain that people would eventually volunteer to be involved in clinical trials, as happened with HIV/AIDS treatments. ‘Unfortunately in end-stage cancer you have no other options.’

Vaccines for human use need to be produced in Good Medical Practice (GMP) facilities, cites Schembri-Wismayer. However, there are no such facilities locally. After a long search, he has finally found an industry partner that has agreed to create the vaccines in Belgium, against a price, as long as he sets up the clinical trials. This little victory comes with its own set of problems. In this case, the new limiting factor is mainly funding. Clinical trials typically cost millions.

The politics of Cancer

Logistics aside, the hunt for a cure faces problems even more complex than what already seems immensely problematic. Schembri-Wismayer explained that there’s a major systematic flaw.

‘Many cancer researchers are not doctors. Their career depends on peer-reviewed publications and not finding a cure.’ This means that as long as their findings are statistically significant or are ‘good enough’ to be published in a high-end scientific journal, their job is done.

Granted, no research finding can be seen as wasted knowledge. Each can be seen as a small step forward. However, Schembri-Wismayer believes that the millions of funds designated to cancer research should have more rapid deliverables that directly benefit the patients, not just academic careers. Unfortunately, the cancer research community is a circular one, where scientists review other scientists mainly based on publications to get further funding.

‘I am not trying to publish in Nature [the world’s top academic publication], I’m trying to cure cancer’, says Schembri-Wismayer as he confesses that he feels guilty about not letting his students publish papers. But this is a necessary evil in the journey towards therapies. ‘Once a method is published, no company will touch it because it’s in the public domain.’ The method would have no monetary value since anyone could copy it. Needless to say, no pharmaceutical company will industrialise a drug that doesn’t guarantee profit.

Speaking of profit, Schembri Wismayer expressed that the financial aspect of this study is one of his greatest motivations. ‘Most of these drugs cost the Earth’, he said, adding that ‘when each shot costs €30,000 and the success rates are low, very few National Health Care systems are going to provide it.’ Take Yervoy, a drug commonly used to treat melanoma; one dose can cost up to €4,000. Survival rates after treatment are low. And there are no ‘money-back-guarantees’ if the outcome is less than satisfactory. As a result, studies have shown that a quarter of cancer patients in the US choose not to take such prescriptions because of such high prices. Money shouldn’t be the limiting factor in the fight for survival. Schembri-Wismayer believes in cancer treatment that’s affordable for everyone.

Fighting the good fight

Even in the face of all these odds, Schembri-Wismayer persists. A cancer patient isn’t just a number; a cancer patient is also a mother, a brother, or a friend. And knowing this is enough to help him and thousands of other cancer researchers to continue pushing through.

One in two people in the UK will be diagnosed with cancer during their lives. It is a harsh reality, but humankind will eventually find a cure just as it has with other previously deadly diseases such as influenza or measles. This vaccine is in its early stages but with the proper support, it may contribute to an affordable, life-saving cure.  

Public health priority: Type 2 diabetes mellitus

Blood testing
What is Malta doing to address this very prevalent problem? Dr Sarah Cuschieri writes about a project called SAĦĦTEK.
Dr Sarah Cuschieri

In Malta, diabetes has been a health concern since 1886. In 1981, the World Health Organization performed the first national diabetes study in Malta and reported that the total prevalence of type 2 diabetes mellitus (T2DM) is 7.7% (5.9% previously known diabetics and 1.8% newly diagnosed diabetics).  

Since then, we have seen that percentage increase through self-reported questionnaire studies such as 2008’s Maltese European Health Interview Survey, which reported a T2DM prevalence of 8.3% in the population aged between 20 and 79. In 2010, it rose again to 10.1%, according to the Maltese European Health Examination Survey. And while this information is definitely useful, it cannot help researchers and doctors investigate what elements contribute to the diabetes epidemic in Malta.  

The economic boom over the last four decades has permanently changed the Maltese Islands. With it came a change in lifestyle habits, like car use and diet, and an influx of different cultural and ethnic populations settling on the islands, which meant that it was time to update our understanding of T2DM in Malta; its prevalence, determinants, and risk factors. 

I undertook the project “SAĦĦTEK – The University of Malta Health and Wellbeing study” to find out more about T2DM in Malta. SAĦĦTEK was a cross-sectional study that will effectively act like a snapshot in time.

The study population included a randomised sample of adults that had been living in Malta for at least six months and held a permanent Maltese identification card, irrelevant of their country of origin.

How is your health? 

Top row: Ayrton Borg Axisa, Bernard Schembri, Ryan Camilleri Middle row: Bader A. Ali, Russell Bonnici, Andrew Chilton Bottom row: Angeline Sapiano, Sarah Cuschieri, Fatemah Abdullah

The survey took place between November 2014 and November 2015, and involved 4,000 people (18 to 70 years of age) who were statistically chosen from the national registry. We set up examination hubs in each town where the participants came in to complete socio-demographic questionnaires. While participants were there, we also took several measurements, including blood pressure, weight, height, and waist circumference. Finally, we took blood samples to check for their glucose levels during fasting periods, genetic analysis, and lipid profile (cholesterol and fats in the blood). 

In the end, 47.15% of the invited adults actually attended the health survey. From these, we found that the prevalence of type 2 diabetes was 10.39%, with males being more affected than females. From the total T2DM group, 6.31% were known diabetics, while the remaining 4.08% were newly diagnosed with T2DM during the study. The numbers mean that over the past couple of decades there has been a rise in the diabetes rate in adults. Higher levels of T2DM mean that related diseases, such as obesity and heart problems, will also be more common. 

In fact, study participants were often overweight (35.66%) or obese (34.11%). The weight increase is very relevant because it puts pressure on the body’s organs, including the pancreas, which has a direct link to T2DM development.

An increase in weight increases waist size, and this too comes with its own set of problems called the metabolic syndrome—increased blood pressure being one of many. A third of survey participants reported a high blood pressure (30.12%), again with a male majority.

Tobacco smoking was also prevalent at 24.3% (male majority). Smoking is linked to T2DM development, increased blood pressure, and stroke.

What are the implications?

The survey results are a major public health concern. An unhealthier population means higher demands on Malta’s healthcare services.

In 2016 diabetes cost Malta an estimated €29 million, while obesity cost an estimated €24 million. The increased disease rate identified means that Malta’s bills are set to rise.

Men seem to have a worse health profile than women. Older males with a high body mass index (BMI) were more likely to suffer from high blood pressure. The majority had normal levels of glucose but abnormal lipid profiles, so even though the sugar levels were normal, they were still at risk when it came to acquiring diseases such as heart problems. Those diagnosed with a metabolic syndrome were five-fold more likely to also have T2DM. There is no denying—the gender gap is a concern.

The survey shows that more public health research is in dire demand. Malta’s underlying problem appears to be the increasing overweight-obesity problem. A number of initiatives have already been put in place by the Health Promotion and Disease Prevention Directorate as well as the establishment of “Dar Kenn Għal Saħħtek”, but there is more to be done.

Gender sensitive action is needed. Government, private entities, communities, and NGOs all need to work together to change the harmful lifestyle choices that have become the norm today. Sedentary lifestyles need to change and high intakes of fat, sugar, and salt need to decrease to alleviate Malta’s weight and diabetes problem. A diabetes screening programme also needs to be introduced to help citizens help themselves. 

Early diagnosis of this disease will benefit all of Malta’s health and wellbeing and safeguard its health services. What more could we hope for? 

Read more:

Cuschieri, S., Vassallo, J., Calleja, N., Pace, N., & Mamo, J. (2016). Diabetes, pre-diabetes and their risk factors in Malta: A study profile of national cross-sectional prevalence study. Global Health, Epidemiology and Genomics, 1. https://doi.org/10.1017/gheg.2016.18

Cuschieri, S., Vassallo, J., Calleja, N., et al. (2016). The diabesity health economic crisis-the size of the crisis in a European island state following a cross-sectional study. Arch Public Health; 74: 52.

Cuschieri, S., Vassallo, J., Calleja, N., et al. (2016). Prevalence of obesity in Malta. Obes Sci Pract 2016; 2: 466–470. 

Living with a rare disease

DNA

Author: Clayton Axiak

Clayton Axiak

Picture yourself waking up one morning with a severe, relentless itch that no clinician or diagnostic tool can understand. Your life would be thrown off kilter. Quality of life would suffer financially, psychologically, and socially as you try to look for a glimmer of light at the end of the tunnel. This is what life is like for most people living with a rare disease. 

Often barraged with terms like ‘unknown’ or ‘undiagnosed’, matters can get even more challenging when the condition becomes more elusive or develops life-threatening consequences. And all of this is exacerbated by inequities in treatment and high costs of the few existing drugs that are available. 

By EU standards, a rare disease is one that affects fewer than one in 2,000 individuals. And these ‘less common’ ailments are difficult to raise monies for to research, leaving large gaps in scientific and medical literature. One such disease is the poorly understood Idiopathic Hypogonadotropic Hypogonadism (IHH). 

Characterised by the absence of puberty and infertility, IHH can be compounded by potentially severe characteristics such as congenital heart disease, osteoporosis at a young age, and early onset of Alzheimer’s disease.

Its cause is usually a genetic anomaly, but a single genetic change can affect two people very differently. This gives rise to an unparalleled complexity that makes the cause harder to decipher. Symptoms are not clear-cut and sometimes mask the actual underlying cause, bringing about misdiagnosis and delayed treatment. Timely diagnosis is crucial for successful treatment that enables the patient to achieve puberty and induce fertility. But this is not always possible. 

Under the guidance of Dr Rosienne Farrugia, I am currently analysing and expanding upon a preliminary assessment of IHH in Malta using high-throughput sequencing (HTS) technology (conducted by Adrian Pleven). With HTS, we can read a person’s entire DNA sequence and attempt to identify differences in the DNA code which lead to such diseases.

What the team has found is that some genetic variants typical of IHH are more common in the Maltese population when compared to mainland Europe and African populations. This is likely due to the reduced genetic variation of our population, shaped by successive events of population reduction and expansion throughout our history.

By mapping the genetic cause of diseases prevalent on our islands, we can help medical consultants to employ specific screening tests that are tailored for local patients suffering from IHH. Such advancements in genomic technology and personalised medicine can make a huge impact on people’s lives. And not only to those suffering from IHH; researching one disease, however rare it may be, can shed light on mechanisms that prove useful in treating many others, ensuring that when it comes to health, no one is left behind.  

This research project is being carried out as part of a Ph.D. program in Applied Biomedical Sciences at the Faculty of Health Sciences.

A healing touch

Research
Emerging research suggests that mild sensory stimulation like touch can protect the brain if delivered within the first two hours following a stroke. Laura Bonnici speaks with experimental stroke specialist Prof. Mario Valentino to find out how uncovering the secrets of this ‘touch’ may have life-changing implications for stroke patients worldwide.
Prof. Mario Valentino

Stroke is universally devastating. Often hitting like a bolt from the blue, it is the world’s third leading cause of death. In Malta, over 10% of the deaths recorded in 2011 were due to stroke. But stroke inflicts suffering not only through a loved one’s passing. As the most common cause of severe disability, stroke can instantly rob a person of their independence and dignity—even their very personality. This impact, individually, socially, and globally, makes stroke research a top priority. 

Yet while scientists know the risk factors, signs, symptoms, and causes of both main types of stroke—whether ischemic, in which clots stop blood flow to the brain, or haemorrhagic, where blood leaks into the brain tissue from ruptured vessels—they have yet to find a concrete solution. 

A dedicated team at the Faculty of Medicine (University of Malta) hopes to change that. Using highly sophisticated technology and advanced microscopic laser imaging techniques, Dr Jasmine Vella and Dr Christian Zammit, led by Prof. Mario Valentino, can follow what happens in a rodent’s brain as a stroke unfolds in real-time. 

‘We use powerful lasers and very sensitive detectors coupled with special lenses, which allow us to capture the very fast events that unravel when a blood clot interrupts the blood supply in the brain,’ explains Valentino. ‘We observe what happens to the neighbouring blood vessels, nerve cells, and support cells, and the limb movements of the rodent throughout.’ Their aim is to find out how sensory stimulation might then help protect the brain. 

The idea stems from an accidental discovery in 2010 by members of the Frostig Group at the University of Irvine, USA. The scientists found that when the whiskers of a rodent were stimulated within a critical time window following a stroke, its brain protected itself by permanently bypassing the blocked major artery that commonly causes stroke in humans. The brain’s cortical area is capable of extensive blood flow reorganisation when damaged, which can be brought about by sensory stimulation.

The human brain can bypass damage. For example, blind individuals have limited use of their visual cortex, so the auditory and somatosensory cortex expands, giving them heightened sensitivity to hearing and touch. For stroke patients, this means that the brain can compensate for its loss of function by boosting undamaged regions in response to light, touch, or sound stimulation.

‘This accidental discovery could be life-changing for stroke patients. The key is to figure out the mechanism involved in how sensory stimulation affects stroke patients, and then establish the best ways to activate that mechanism. Perhaps touching a stroke victim’s hands and face could have a similar beneficial effect, and this is what this latest research study hopes to define,’ says Valentino. 

‘The team is now painstakingly correlating the data obtained during this brain imaging with the rodent’s movement and trajectory,’ he continues. ‘Using a motion-tracking device fitted under a sophisticated microscope, we can record the behaviour of the rodent during high-precision tactile stimulation, such as stroking their whiskers, and detect any gain of [brain] function through behavioural and locomotor readouts whilst ‘looking’ inside the brain in real-time.’

If they can prove that any protection is the direct cause of new blood vessels (or other cells) resulting from the electrical activity inspired by the sensory stimulation, then the next step would be to explore ways of redirecting these blood vessels to the affected brain area. 

The team’s track record is encouraging. In collaboration with scientists from the University Peninsula Schools of Medicine and Dentistry, UK, they made another recent breakthrough that was published in Nature Communications, identifying a new drug, QNZ-46, that could protect the rodent brain following a stroke.

‘That project was about neuroprotective agents – to create a drug that will substantially block or reduce the injury, and so benefit a wider selection of patients,’ elaborates Valentino. ‘The study identified the source and activity of the neurotransmitter glutamate, which is the cause of the damage produced in stroke. This led to the discovery that QNZ-46 prevents some damage and protects against the toxic effects of the glutamate. This is potentially the first ever non-toxic drug that could prevent cell death during a stroke, and the results from this research could lead to pharmaceutical trials.’

The use of two-photon laser-scanning microscopy allows the measurement of blood flow in single vessels concurrent with indicators of cellular activity deep within the rodent brain. Whisker stimulation evokes electrical activity that can be monitored by the use of genetically engineered calcium-sensitive and light-emitting neurons that sense the propagating waves of electrical activity.

While ongoing research in these projects has been supported through a €150,000 grant from The Alfred Mizzi Foundation through the RIDT, Valentino points out that globally-significant discoveries such as these are in constant need of support.

‘The funding of such projects is so important. This money is life-changing for people in such a predicament. Health research changes everything—our lifestyle, our quality of life, our longevity. And yet, government funding for research is still lacking. It’s only thanks to private companies and the RIDT, who realise the global potential of our work, that these projects can continue to try to change the lives of people all over the world,’ says Valentino.

And while Malta may be a small country with limited resources, the work conducted within its shores is reaching millions globally, proving that when it comes to knowledge, every contribution counts. We must continue striving for more to leave our best mark on the world. 

Help us fund more projects like this, as well as research in all the faculties, by donating to RIDT.

Link: researchtrustmalta.eu/support-research/?#donations

To patent or not to patent?

As universities and research institutions look to protect the knowledge they develop, András Havasi questions time frames, limited resources, and associated risks.
András Havasi

The last decade has seen the number of patent applications worldwide grow exponentially. Today’s innovation- and knowledge-driven economy certainly has a role to play in this. 

With over 21,000 European and around 8,000 US patent applications in 2018, the fields of medical technologies and pharmaceuticals—healthcare industries—are leading the pack. 

Why do we need all these patents?  

A patent grants its owner the right to exclude others from making, using, selling, and importing an invention for a limited time period of 20 years. What this means is market exclusivity should the invention be commercialised within this period. If the product sells, the owner will benefit financially. The moral of the story? A patent is but one early piece of the puzzle in a much longer, more arduous journey towards success.

Following a patent application, an invention usually needs years of development for it to reach its final product stage. And there are many ‘ifs’ and ‘buts’ along the way to launching a product in a market; only at this point can a patent finally start delivering the financial benefits of exclusivity. 

Product development is a race against time. The longer the development phase, the shorter the effective market exclusivity a product will have, leaving less time to make a return on the development and protection costs. If this remaining time is not long enough, and the overall balance stays in the negative, the invention could turn into a financial failure.

Some industries are more challenging than others. The IT sector is infamous for its blink-and-you-miss-it evolution. The average product life cycle on software has been reduced from three–five years to six–12 months. However, more traditional sectors cannot move that quickly.

The health sector is one example. Research, development, and regulatory approval takes much longer, spanning an average of 12–13 years from a drug’s inception to it being released on the market, leaving only seven to eight years for commercial exploitation.

So the real value of a patent is the effective length of market exclusivity, factored in with the size of the market potential. Can exclusivity in the market give a stronger position and increase profits to make a sufficient return on investment? All this makes patenting risky, irrespective of the technological content—it is a business decision first and foremost.

Companies see the opportunity in this investment and are happy to take the associated risks. But why does a university bother with patents at all and what are its aims in this ‘game’?

Universities are hubs of knowledge creation and today’s economy sees the value in that. As a result, research institutions intend to use and commercialise their know-how. And patenting is an essential part of that journey.

The ultimate goal and value of a patent remains the same, however, it serves a different purpose for universities. Patents enable them to legally protect their rights to inventions they helped nurture and claim financial compensation if the invention is lucrative. At the same time, patent protection allows the researchers to freely publish their results without jeopardising the commercial exploitation of the invention. It’s a win-win situation. Researchers can advance their careers, while the university can do its best to exploit the output of their work, bolster its social impact, and eventually reinvest the benefits into its core activity: research. 

At what price?

Patenting may start at a few hundred or thousand euros, but the costs can easily accumulate to tens or even hundreds of thousands over the years. However, this investment carries more risk for universities than for companies.

Risks have two main sources. Firstly, universities’ financial capabilities are usually more limited when compared to those of businesses. Secondly, universities are not the direct sellers of the invention’s eventual final product. For that, they need to find their commercial counterpart, a company that sees the invention’s value and commercial potential. 

This partner needs to be someone who is ready to invest in the product’s development. This is the technology transfer process, where the invention leaves the university and enters the industry. This is the greatest challenge for university inventions. Again, here the issue of time raises its head. The process of finding suitable commercial partners further shortens the effective period of market exclusivity.

A unique strategy is clearly needed here. Time and cost are top priorities. All potential inventions deserve a chance, but risks and potential losses need to be minimised. It is the knowledge transfer office’s duty to manage this. 

We minimise risks and losses by finding (or trying to find) the sweet spot of time frames with a commercial partner, all while balancing commercial potential and realistic expectations. The answer boils down to: do we have enough time to take this to market and can we justify the cost?

Using cost-optimised patenting strategy, we can postpone the first big jump in the costs to two and a half years. After this point, the costs start increasing significantly. The rule of thumb is that about five years into a patent’s lifetime the likelihood of licensing drops to a minimum. So on a practical level, a university invention needs to be commercialised very quickly. 

Maintaining a patent beyond these initial years can become unfeasible, because even the most excellent research doesn’t justify the high patenting costs if the product is not wanted by industry. And the same applies for all inventions. Even in the health sector, despite product development cycles being longer, if a product isn’t picked up patents can be a huge waste of money.

Patenting is a critical tool for research commercialisation. And universities should protect inventions and find the resources to file patent applications. However, the opportunities’ limited lifetime cannot be ignored. A university cannot fall into the trap of turning an interesting opportunity into a black hole of slowly expiring hopes. It must be diligent and level-headed, always keeping an ear on the ground for the golden goose that will make it all worth it. 

Science and coffee, anyone?

In an age of misinformation, having a grasp on current affairs and research is essential for us to be active, responsible citizens. Gillianne Saliba writes about the dire need for more dialogue and engagement from citizens and scientists alike.
Gilliane Saliba

For many, science is far removed. It’s just a subject they had to take at school. Or the star of crazy stories on newspapers, or videos and memes on social media. Opposing views are a dime a dozen. And sometimes it’s very hard to discern between them; what’s right? what’s wrong? ‘It’s complicated,’ they say, ‘it’s hard’, and so most people move on, letting others do all the talking. As a result, science and citizens have had a rocky relationship. But when the issues being discussed relate to health, technology, and our environment, that is, when they affect us directly, we need to be able to engage. 

Science Communication (SciComm for short) can offer a solution to this problem. 

SciComm can take many forms. Articles, films, museum exhibitions; you name it. In the wake of a scientific knowledge-gap in the community, SciComm has taken root and has been rapidly growing over the last 40 years. Researchers want to share their ideas and get citizens’ input, gauge interest, and see what others have to say. 

Enter Malta Café Scientifique. 

To create a safe space where people can chat about science, Malta Café Sci organises monthly science communication events in Valletta where researchers and professionals discuss topics of interest with attendees. Entrance is completely free and open to all, which attracts a diverse audience. 

What makes Malta Café Sci special is how it prioritises the public, putting their learning experience first. The events are tailored to them. Speakers keep their talks short and succinct, taking complex scientific concepts and breaking them down, discussing how the research can impact society. The Q&A session that follows is often far longer than the talk itself, opening up a dialogue within the audience. The elitist mantra of ‘it’s complicated’ is so far gone that talks, and the following question and answer portion of the evening, are put to bed with closing drinks where speakers and audience members can have one-on-one time, discussing the topic of the day. 

I have been volunteering as an organiser with Malta Café Scientifique for the last nine months. Through the experience, I have gained marketing and public speaking skills.

More importantly, I have had the privilege of a front row seat to pivotal moments in people’s lives—the moment when perception shifts. 

I’ve often had audience members come up to me after an event to tell me how the talk changed their ideas. How they are learning to be more receptive but also critical about what they learn and read online. Some point out how they usually steer clear of such events, with many wrongly thinking they aren’t smart enough for them, only to find that they not only understand, but can also participate.

Aside from all this, Malta Café Scientifique is also conducting its own research. Led by Café Sci’s project manager Danielle Martine Farrugia, we are evaluating and interviewing different science communicators about their practices. We’re also evaluating the initiative to understand its contribution to science communication in Malta. 

What we can already see is that Malta Café Sci is living, breathing proof of how people can come together when dialogue is open and welcoming. It is empowering local researchers to share their findings with citizens while giving community members the chance to learn and weigh in on work that may have ramifications for them. Where a learning process is no longer from expert to layman, but a continuous sharing of information in both directions.  

Note: For more about Malta Café Scientifique’s next events, or if you want to get involved, see its Facebook page or Instagram @maltacafesci. Or email us on cafesci@mcs.org.mt. 

SMARTAQUA: Acting fast on marine corrosion

Maintenance is not the sexiest aspect of business, but diligent corrosion monitoring in the oil, gas, and maritime industry could prevent massive environmental accidents. Inês Pimparel writes on behalf of AquaBioTech Group.
Inês Pimparel

The maritime industry is going through massive developments. Traditional oil and gas remain powerful, as does the shipping industry, but there is a big rise in more sustainable businesses such as offshore wind and solar energy farms. Corrosion affects them all equally.

The NACE International Institute estimates that corrosion costs the maritime industry between $50 and $80 billion every year. Clearly, maintenance is an expensive practice, which might lead to neglect, resulting in catastrophic environmental incidents. 

A low-cost, eco-friendly, and efficient solution is needed to monitor corrosion and enable earlier repair.

The industry currently monitors structures using ultrasonic or magnetic sensors. However, other solutions exist. The University of Aveiro (Portugal), the Norwegian research institute SINTEF, and the Maltese company AquaBioTech Group are working on SMARTAQUA, an innovative but simple approach that uses a special paint. 

Scanning electron microscope pictures of nanomaterials used in the project.

It uses environmentally-friendly nanomaterials to form a functional solid film over surfaces such as the support for a floating fish farm or the base of a wind turbine. Because the nanolayer goes directly onto the structure, it can combine colorimetric with magnetic analysis to detect corrosion as it happens. 

The detection method will be tailor-made to the depth at which the metallic structure is placed to assess the integrity of the structures. Colorimetric detection is a relatively simple, user friendly, and reliable manner of detecting corrosion in splash zones. But in submerged structures, where colorimetric detection is not possible, the use of magnetic measurements would reveal the state of coated substrates.

The approach is not completely novel. The aeronautical sector is already introducing it. The AquaBioTech Group is performing toxicity tests on the nanomaterials using marine organisms such as microalgae and mussels. After this, the team will test the nanolayer’s efficacy on metallic structures in their offshore testing site close to St Paul’s Islands.

If this technology is proven safe and effective it will revolutionise the field of monitoring activities. It will reduce transport needs when assembling new offshore structures, indirectly reducing fuel use and greenhouse gas emissions. The commercial and environmental benefits are massive.

The project is highly collaborative. It brings together a small business, a research institute, and a university; testament that success can be achieved through co-creation, inclusivity, and sustainability—and that small advances can lead to a sea of change. 

Note: This project was funded by the Research Council of Norway (through the programme of Petromaks II, project 284002), the Foundation of Science and Technology in Portugal, and the Malta Council for Science and Technology via the MarTERA – ERA-NET Co-fund scheme of H2020 of the European Commission.

STEM ambassadors thrashing stereotypes

Over the last four decades, STEM industries have risen to great heights. Scientific, technological, engineering, and mathematical minds have been called to rally. And the demand continues. How can you contribute?

Few would dispute that technological and scientific advancements dominate the 21st century. Adverts provide ample proof. From tablets to smartphones, to robot home appliances and driverless cars, our world is changing fast. As a result, we are now living in a global knowledge-based economy where information can be considered as the highest form of currency. This reality comes with both benefits and challenges. 

Statistics from 2013’s European Company Survey show that 39% of European Union-based firms had difficulty recruiting staff with STEM skills. Malta is no exception. Another report in 2018 showed that people with STEM careers are still in short supply locally, especially in the fields of healthcare, ICT, engineering, and research. So, while the jobs are available, there aren’t enough people taking up STEM careers, and this is holding Malta back. 

There are many reasons for this trend. For one, Malta has a low number of tertiary level graduates; the third lowest in the EU. An array of harmful stereotypes can also shoulder some blame. The ‘fact’ that people in math, science, and technology ‘don’t have a social life’ is unhelpful. The ‘nerd’ image is still prevalent, especially among the younger generations that are still in primary and secondary school. Then there is the ‘maleness’ associated with STEM jobs and industries. According to Eurostat statistics, in 2017, from 18 million scientists and engineers in the EU, 59% were men and 41% women. 

Still, this is far from the whole picture. 

Employers have reported instances where, despite having enough graduates to fill roles, applicants did not possess the right non-technical skills for the job. This was especially true for abilities such as communication, creative thinking, and conflict resolution. 

Many were unprepared to work in a team, to learn on the job, and to problem solve creatively. This is a real concern, especially for the country’s future. At the rate with which markets are evolving, a decade from now young people will be applying for jobs that do not exist today, and the country needs to prepare students for these roles. And it has to start now. 

The Malta Council for Science and Technology (MCST) is trying to do this through an Erasmus+ project called RAISE. They are launching an Ambassador Programme to empower young students to take up the STEM mantle. STEM Career Cafés are going to be popping up in schools all over Malta, alongside a Career Day at Esplora aimed to inform and inspire. This is where you come in.

They want undergraduates from the University of Malta and MCAST to work with Esplora by sharing your experiences in STEM and telling your stories to encourage those who may be considering a STEM career. STEM Ambassadors will gain important public engagement skills while making research and science careers more accessible.

STEM is crucial in our contemporary world; our economies depend on it. It has completely changed the way we live and opened up new prospects for a future we never imagined. For those who have already made up their mind to be a part of it, there is now the opportunity to empower others and guide them in finding their own path. 

Note: To become a STEM Ambassador, email programmes@esplora.org.mt or call 2360 2218.

The MCST, the University of Malta, and the Malta College of Arts, Science and Technology have embarked on a national campaign to promote STEM Engagement. Its first activity was a National STEM Engagement Conference.

Burnout

In airplane safety demonstrations, we are always told to put oxygen masks on ourselves before we help others. If we are not well, how can we help others efficiently? Dr Patrick Barbara writes about burnout among Malta’s mental health professionals and what we can do to resolve this worldwide issue.

Mental health professional ‘Joe’ works in the Maltese hospital’s  services. He feels emotionally drained and at the end of his rope. In the morning, he wakes up dreading his workday. The passion for it has dissipated. Maybe, he thinks, it’s time to quit.

Dr Patrick Barbara

Dr Aloisia Camilleri and I explored the concept of burnout in professionals working within our mental health system. The research project itself was born from the notion that to support those who need care, service providers themselves need to have good mental health. 

To understand job-related burnout, it is best to see it as a spectrum. People can be happy, satisfied, and fully engaged, or they can be completely disinterested and disengaged. This framing helps us understand that there are differing degrees of burnout, while also highlighting that different definitions of burnout can lead to different results.

In our research, burnout was defined as a process where a person’s psychological resources are gradually depleted as a result of prolonged stress at work. This then manifests in emotional exhaustion, depersonalisation, and loss of personal accomplishment. The person feels worn out, fatigued, detached, and cynical about their job. Ultimately there’s a sense of inability to cope, and low morale sets in. This is the ultimate lose-lose situation where both the employee and the patients suffer as the organisation loses efficiency.

For the study, we invited 322 professionals to participate anonymously. The roles they occupied varied and included psychiatry doctors, nurses, occupational therapists, psychologists, psychotherapists, and social workers. In the end, 230 agreed to answer our standardised questionnaires. The results were in line with those of similar studies conducted abroad.

Emotional exhaustion scored highly (40.4% of respondents), as did poor personal accomplishment (30.4%). A fifth (18.3%) experienced high depersonalisation levels, while 13.9% scored high on all three features of burnout.

What causes burnout is complex and difficult to explain. The healthcare environment and the systems operating within it do tend to put healthcare workers at risk. They suffer from time pressures, emotional intensity, role conflict, and difficult relationships between employees and management.

Research suggests that people at risk of experiencing burnout often experience a mismatch between their personality and abilities and the role they are in. This mismatch is subjective, depending on the individual as much as it is related to any particular job. So while it can mean that a person has chosen a job outside of their natural abilities, it can also mean that there may be a discrepancy in expectations between the person and the organisation. So this is not just an issue of too much work. Other central elements include control, values, community, fairness, and rewards.

To prevent or resolve some of the issues associated with burnout, people need to have a sense of control at work. They need to feel rewarded (not just financially, but also socially) and treated fairly. They need to feel that they are part of a community that communicates in a civil manner and shares the same or at least similar values. Since this job-person mismatch is a subjective experience, a positive outlook towards work also helps avoid burnout. Our research showed that people who have a better ‘match’ in one factor tend to score better in the other factors as well.

So how can burnout be addressed? Awareness is the first step towards recovery. Education is essential for people to recognise and identify burnout. Practising mindfulness can prove to be an excellent tool for anyone. By becoming more in tune with our own thoughts and emotions, evaluating them in a non-judgemental way, we can avoid falling down the slippery slope towards an unhealthy mental state.

Keeping boundaries and a correct work-life balance is another point. Having time for life outside work and being passionate about other activities is critical. Whether it’s exercise, writing, or creating art, cultivating other interests keeps our worlds varied and occupied. It creates a situation where there are other things to focus on when difficult times come.

From an organisational perspective, we need to work harder to recognise that employees are the most important resource at any workplace. They need to be supported and involved in decision making as much as possible.

Burnout is linked to other mental health conditions such as depression and anxiety. Any employee who experiences mental health problems that impinge on one’s life must feel that they are not alone and help is available. Most people spend the majority of their day and life at work so we need to make sure that it is experienced as positively as possible. 

Four reasons why we should not forget about Ebola

Author: Dr Raquel Medialdea-Carrera

Dr Raquel Medialdea-Carrera

When was the last time you heard about the Ebola virus? Many of you may recall Ebola dominating headlines in global news throughout 2014 and 2015 when it spread explosively across West Africa, claiming more than 11,300 lives.

For the last few years, Ebola has been my focus, passion, and dreaded nightmare rolled into one. In 2015, I joined a wonderful team of physicians, nurses, and scientists, that were leading the fight against Ebola in Sierra Leone. We worked in Ebola hospitals isolating patients and supporting survivors of the virus’ worst epidemic in history. Then, the World Health Organization (WHO) declared that the outbreak was over in 2016. News stations stopped covering our progress. Discussions about the disease dwindled. But the fight to eradicate Ebola was far from over. 

Since August 2018, an Ebola epidemic has spread across the Democratic Republic of Congo (DRC), affecting over 2,000 people and becoming the second largest epidemic ever recorded. Over the last few weeks, I have joined the WHO to support the fight against it in Africa.

The latest Ebola outbreak in Congo is affecting people who were already suffering from a major humanitarian crisis. People in the DRC are devastated by years of violence and conflict, resulting in the largest displacement emergency in Africa. Four and a half million are currently fleeing their homes. With over 100 different armed groups in the country, the challenge of ending this Ebola outbreak is on a whole new level. But still, there is hope.

Over the last few years, researchers have toiled hard and developed a powerful vaccine against the Ebola virus. This vaccine is still under evaluation, however, the preliminary results show a wonderful efficiency of over 97.5%. Even so, we have to remain aware. Ebola is a cruel, painful death sentence for most people who get infected, and leaves in its wake a trail of broken families, hundreds of orphans, and shattered hospitals. It decimates economies and destroys societies, leading to even more poverty and hardship. This is why we cannot forget about Ebola.