Metal Gear Solid V: Ground Zeroes

Game Review_Costantino

Why is Metal Gear Solid V one of the most relevant games of the season? After all, new iterations of this franchise have been released for the past 25 years. Sure, Ground Zeroes boasts a new graphic engine and a vivid open-world structure. Enough to keep the tech savvy fan happy. But it’s Hideo Kojima’s authorial take that makes the difference. Continue reading

Love Letter

BoardGame-Review

The Microgame is a buzzword that has exploded over the last year in the board game community. Microgames are video game mini-games but analog and a lot more awesome. Love Letter is the microgame that popularised the format—Kanai’s 16-card wonder. 

Love Letter was not the first microgame, it wasn’t even Kanai’s first microgame. R, another game of his was a popular title which you could buy by emailing the designer. He would then mail you an envelope with the cards in it, which was the board game itself. Love Letter is a spiritual successor to ‘R’, and the first of his works to have an international distribution.

In Love Letter you are trying to deliver the proverbial letter to the princess. You do this by gaining the favour of her closest friends. The deck is made up of these people, all having a number. The person who holds the card with the highest number at the end of the round, or the last person standing, wins. 

In the game you always keep one card in your hand, and at each turn you draw a card and choose one of the two to discard. Each card though, has a specific ability, which activates as soon as you discard it. For example, if you play a Guard, you have the opportunity to try to guess another player’s card. If you do, that player is out. The Countess for example, cannot be caught with the Prince or the King (you must discard her if she does). This would mean fornication. The Priest can see another player’s card, since this constitutes confession, and the Baron can kick out anyone of a lesser number than him due to politics.

The game takes a little bit of getting used to. It is quite different from other mainstream games but I have not had so much fun with cards since I first found money in birthday cards.

With almost infinite replayability, a price point of around €9, extreme portability, and tight, nail biting moments, Love Letter is a definite buy. There is very little chance of going wrong. Five Stars. 

P8150117

An Automatically Tailored Experience

Digital games need to keep players engaged. Since games are interactive media, achieving this goal means that game designers need to anticipate player actions to create a pre-designed experience. Traditionally, developers have achieved this by restricting player freedom to a strict set of actions thereby curating player experience and ensuring the fun factor. However, games are taking a different route with more users making their own content (User Generated Content, UGC) through extensive creativity tools which make it hard to predict player experience.

Vincent E. Farrugia
Vincent E. Farrugia

To overcome these challenges Vincent E. Farrugia (supervised by Prof. Georgios N. Yannakakis), merged game design and artificial intelligence (AI). He developed a software framework for handling player engagement in environments which feature user generated content and groups. The three pronged solution tackles problems during game production, playing the game itself, and making sure the framework is sustainable. To maintain engagement within groups he analysed data for a particular person within the group but also patterns common across the whole group. Farrugia created software tools, autonomous AI aids, and tools to test and support the framework.

The software framework is made up of inter-operating modules. Firstly, an engagement policy module allows designers to specify theories to express their vision of positive game engagement. Player modelling then shapes this backbone to specific player engagement needs. The module can autonomously learn from player creations as reactions to game stimuli. Individual and group manager modules use this mixture of expert knowledge, AI learnt data, and player game-play history to automatically adapt game content to solve player engagement problems. This procedural content generation (PCG) is tailored for a specific player and time.

The framework’s abilities were showcased in a digital game also developed by Farrugia. Various technologies were incorporated to encourage player creativity in group sessions and to enhance networking. The setup also allowed the AI to quickly learn from each player via parallelism. Initial testing used a simulated environment with software agents. Preliminary testing on real players followed. The simulation was through a personality system to validate the underlying algorithms under various conditions. The resulting diverse game-play styles provide suggestions for AI model improvement. Farrugia is enthusiastic about future work for this AI framework and giving developers better tools to allow player creativity to flourish while maintaining positive game-play experiences. 


This research was performed as part of a Master of Science degree at the Institute of Digital Games, University of Malta. It was partly funded by the Strategic Educational Pathways Scholarship (Malta), which is part-financed by the European Union—European Social Fund (ESF) under Operational Programme II—Cohesion Policy 2007—2013, ‘Empowering People for More Jobs and a Better Quality of Life’.

Moving wheelchairs with your thoughts

Brain to computer interface (BCI) devices can read a person’s thoughts and turn them into commands to move objects. They can give freedom to people suffering from movement impairments. Rosanne Zerafa (supervised by Tracey Camilleri) developed a system that detects a person’s brain patterns while they are thinking of moving a particular part of their body and translates them into commands to move a cursor. The research has the potential to remove considerable lag between thinking of moving an object and it actually moving.

Brain activity can be detected using an electroencephalogram (EEG), which is made up of a cap with electrodes that touch a person’s scalp. The electrical activity captured by the electrodes is then interpreted by a software program to give commands to move a robotic arm, wheelchair, or other assistive device.

Zerafa tested the system on four individuals who were thinking about moving their left or right hand. Different brain patterns from these two tasks could be identified and translated into left or right movement of a cursor on a computer screen.

Taken together, the software could be further developed and tested to improve it for real-world needs such as assisting people with movement difficulties and even gaming.

This research was performed as part of a Bachelor of Engineering (Honours) at the Faculty of Engineering. 

Well-being for all through E-health

E-health uses electronic processes and communications to enhance healthcare. The aim is to improve patient care, reduce costs, and empower patients to work towards maintaining their own well-being.

To work e-health needs a lot of data about patients. This health data is also crucial to discovering new drugs and improving patient care. Using specialised devices and telemedicine, a wide range of conditions can be monitored at home. Smartphones can process the information and transmit it to healthcare professionals and/or patients. Using e-health, conditions can be monitored continuously providing real-time monitoring of the condition and its treatment. 

For the full potential of e-health to be realised electronic health records need to be linked to other information, like images and text. This combined knowledge then needs to be distributed through a cloud service, so that a patient or doctor can see it immediately. Genetic profile and socio-economic factors can also be included to provide improved diagnoses and health predictions. In addition, approaches such as data mining offer exciting research opportunities. Data mining can help identify more effective treatments, improve drug safety, reduce risk, and better public health systems. E-health can improve how diseases develop and disabilities are spread throughout different populations.

Assistive technology can be provided through an intelligent healthcare device. These devices include a dispenser that might text you to remind you to take your pills — especially useful for patients with memory problems. If the patient does not take their medication after multiple reminders, the system could automatically alert a family member or carer. This could prove a lifesaver for patients with depression or dementia. Through relatively simple technology, patients can take care of themselves at home, reducing the burden on hospitals.

At the University of Ulster we have been researching e-health solutions for decades. It ranges from cloud computer systems for ‘big’ healthcare data to home-sensor based reminder systems for Alzheimer’s patients. We have also worked with designers to embed sensors into clothing designed to help older people become more active outdoors. Our focus has been to developed new algorithms (computer programmes that do a specific task) to analyse data collected by a system of devices. What we learn from these algorithms can be used to adapt the environment to take better care of the patient. Such feedback is essential to make the technology seamlessly integrate with a patient’s needs and preferences. Feedback could either be through an audio prompt or transmit an alert to a carer indicating that assistance is required. The research opportunities are endless.

In Malta, the University of Malta is well placed to leverage research opportunities for local solutions. Key components are already in place in several faculties, where the focus on Communications and Intelligent Computer Systems is particularly relevant to Malta, with a number of ongoing e-health research projects.

E-health provides business opportunities for the private sector. It can take academic research and use it to develop new technologies, deploy it, or manage it. For example in Northern Ireland there has been a huge interest in developing these business opportunities by creating awareness among investors. This investment can bring improved health and well-being, while supporting economic development. Such developments could be relevant to Malta which is similar to Northern Ireland in having a geographically peripheral location within Europe, an integrated healthcare system, and a technically skilled workforce. Due to its objective of establishing a regional hub for a knowledge-based and ICT-enabled economy, SmartCity Malta could be well placed to bring together the research expertise of the University of Malta and businesses. Together they could advance Malta’s healthcare for everyone. 

Prof. Sally McClean is a Professor of Mathematics at the University of Ulster (Belfast, Northern Ireland), and participated in the 2013, Workshop in Information and Communication Technology (WICT) organised by the Faculty of ICT at the University of Malta.