Should Malta Be The Next China?
After repeatedly visiting Asia, I totally disagree with comments occasionally made that China’s industrial success is wholly attributed to its ability to replicate low quality versions of branded products at rock-bottom prices. In China there are many good examples of good quality products and brands being produced such as Audi, Airbus, and Armani. Based on these facts, what Maltese industry and policy makers should focus on is making our industry more competitive by improving the current situation and analyzing products being developed elsewhere.
The Maltese industry is not really dying. Our industry has indeed changed, for example from textiles to pharmaceuticals. Overall, the number of employees has declined. However, this is either due to industry becoming more efficient hence able to produce more with less, or due to the way statistical data is being collected.
Malta’s industrial sector can become more competitive. However, what does it mean to ‘be competitive’? Goods should be produced with shorter delivery periods, better costs and quality compared to competitors. Since we lack raw materials cost is very challenging to compete on. On the other hand, improving quality provides much more opportunity. Quality can be improved by increasing the external quality of the products manufactured, the product’s functionality, the interactions that take place with clients during product development, the quality of support and after sales services, management of operations, and how operators work. Core to adopting this quality-based approach is the need to focus on shifting from just manufacturing products to designing and manufacturing products in Malta.
“Goods should be produced with shorter delivery periods, better costs, and quality compared to competitors”
To design their own products, Maltese manufacturing firms need to set up an internal Research & Development unit. At the same time, industry needs support through government policies and incentives. In their publication ‘Vision 2015’ American consultants clearly specify product design as an enabler to higher value added manufacturing. The Malta Chamber of Commerce, Enterprise & Industry has also recommended starting a Malta Business Research & Innovation Body. These recommendations need urgent implementation to shift Malta’s manufacturing industry towards becoming ‘design driven’.
The UoM’s Faculty of Engineering has been actively contributing towards a design driven approach. Our undergraduate engineers are purposely trained in this design-centric approach. Additionally, some final year student projects focusing on design are sponsored by industry: an excellent win-win mechanism. A number of both mechanical and electrical engineers have also benefited through an evening M.Sc. in Integrated Product Development. The Faculty also collaborates with industry through MCST funded Research & Innovation projects. More financial support to University would help every academic active in research to regularly receive decent research funds.
Considering the above, Malta does not and should not aim to be the next China. On the other hand, Malta should nurture its unique strengths such as a highly educated, flexible English-speaking workforce. We should aim to address weaknesses related to Malta’s manufacturing sector. This requires short-term and long-term commitments from our policy makers. Business leaders can also proactively embrace change by aiming to offer quality and innovative solutions, rather than aiming for higher production rates of existing products. The Maltese industry should support continuous training and collaborate on research activities with University. The UoM can help them become more innovative. Like Airbus, Armani, and Audi, Maltese business leaders should exploit, rather than fear, Asian industry. Some Malta based entities, such as Toly Products Ltd, are already going down these routes and are reaping the rewards of growth during a recession. Clearly others should aim to do the same to keep Malta competitive.
Incubator Helps Start-ups take off
The old saying goes: it takes a village to raise a child. In other words, to get it right a community effort is needed, shared by family and friends who pass on their experience and knowledge to the youngster.
The same saying applies to building technology companies. Budding technology entrepreneurs in Malta need plenty of nurturing and guidance to get their innovations off the ground and into the marketplace. A supportive and well-connected entrepreneurial community is what is needed to transform Malta’s innovations into start-up ventures that will expand the economy.
The good news for Malta is that the basic components of a technology start-up community already exist. The University of Malta is a hothouse of world-class scientific, engineering, and creative research that holds the potential to spin out exciting commercial ventures. A new generation of bright, technically-skilled graduates is starting to pursue entrepreneurship as a career path. Malta lacks a professional venture capital investment industry, but does have high net worth entrepreneurs and private ‘angel’ investors. Many of these have valuable experience gained abroad and are hungry to find and fund high-potential technology companies. The government is exploring ways of encouraging early-stage investment by way of tax incentives and seed fund development. Ideas, entrepreneurial energy, and money — the key ingredients for raising technology start-ups — are all here on the island.
“Tucked away in their laboratories, garages, and workshops, Malta’s innovators are not networking”
So, what is holding us back? I recently spoke to Steve Blank, a highly successful Silicon Valley entrepreneur and investor. I asked him what he thought was missing. His reply: ‘much of the Valley’s alchemy lies in connectivity’.
Innovators, entrepreneurs, investors – Malta has got them all. Unfortunately, they are not finding each other. Tucked away in their laboratories, garages, and workshops, Malta’s innovators are not networking. They need skilled and experienced business people to push their technologies past the idea stage. Wealthy angel investors are here in Malta, but they frequently operate ‘under the radar’ and can be hard to access. In the absence of connections, both investors and innovators miss out on potentially rewarding opportunities. Promising young ventures, which might takeoff with a little support and funding, consequently get left to struggle on their own.
The University of Malta Business Incubator will start operations this year and create a platform for new start-ups. Opening its doors to researchers, students, and aspiring technology entrepreneurs, the incubator will provide them with space to plan, launch, and grow businesses. There, a network of seasoned entrepreneurs, business mentors, and angel investors will join them. These ‘parents and village elders’ will be mobilised to concentrate efforts to guide start-ups to create a company, raise capital, and reach the marketplace. We aim to make the incubator a lively hub to create businesses.
Building a company, like raising a child, is a lot of hard work. Bringing the community together under one roof, where it can do the job right, will ease the labour of start-up development, and improve the odds of scoring triumphs.
Ben McClure is Manager at the University of Malta Business Incubator
Immersive 3D Experience
Comfortably sitting in seat 3F, John is watching one of his favourite operas. This close he can see all the details of the set, costumes, and the movements of the music director as he skilfully conducts the orchestra by careful gestures of his baton. He is immersed in the scene, capturing all the details. Then all of a sudden, the doorbell rings. Annoyed, John has to stop the video to see who it is. This could be the mainstream TV experience of the future.
This scene is called free-viewpoint technology that is part of my research at the University of Malta (UoM). Free-viewpoint television allows the user to select a view from which to watch the scene projected on a 3D television. The technology will allow the audience to change their viewpoint when they want, to where they want to be. By moving a slider or by a hand gesture, the user can change perspective, which is an experience currently used in games with their synthetically generated content — synthetically generated by a computer game’s graphics engine.
“For free-viewpoint to work, a scene needs to be captured using many cameras”
Today we are used to seeing a single viewpoint. If there are multiple perspectives we usually don’t have any control over them. Free-viewpoint technology will turn this idea on top of its head. The technology is expected to hit the market in the near future, with some companies and universities already experimenting with content and displays. New auto-stereoscopic displays do not need glasses (pictured next page), these displays ‘automatically’ generate a 3D image depending on which angle you view them. A clear example was the promise made by Japan to deliver 3D free-viewpoint coverage of all football games as part of their bid to host the FIFA World Cup in 2022. The bid was unsuccessful, which might delay the technology by a few years.
Locally, my research (and that of my team) deals with the transmission side of the story (pictured). For free-viewpoint to work, a scene needs to be captured using many cameras. The more cameras there are, the more freedom the user has to select the desired view. So many cameras create a lot of data. All the data captured by the cameras has to be transmitted to a 3D device into people’s homes, smartphones, laptops and so on. This transmission needs to pass over a channel, and whether it is fibre cable or wireless, it will always have a limited capacity. Data transmission also costs money. High costs would keep the technology out of our devices for decades.
My job is to make a large amount of data fit in smaller packages. To fit video in a channel we need to compress it. Current transmission of single view video also uses compression to save space on the channel so that more data can be transmitted and save on price. Note that, for example for high definition we have 24 bits per pixel and an image contains 1280 by 720 pixels (720p HD standard), that’s nearly 100,000 pixels for every frame. Since video is around 24-30 frames per second the amount of data being transmitted every minute starts escalating to unfeasible amounts.
Free-viewpoint technology would be another big leap in size. Each camera would be sending their own video, which is the same amount of data as we are now getting. If there are ten cameras, you would need to increase channel size by a factor of ten. This makes it highly expensive and unfeasible. For the example above, the network operator needs ten times more space on the network to get the service to your house, making it ten times more expensive than single view. Therefore, research is needed to drastically reduce the amount of data that needs to be transmitted while still keeping high quality images. These advances will make the technology feasible, cheaper, and available for all.
So the golden question is, how are we going to do that? Research, research, and more research. The first attempts by the video research community to solve this problem were to use its vast knowledge of single view transmission and extend it to the new paradigm. Basic single view algorithms (an algorithm is computer code that can perform a specific function, like Google’s search engine) compress video by searching through the picture and finding similarities in space and in time. Then the algorithms send the change, or the error vector, instead of the actual data. The error vector is a measure of imperfections and how it is used by computer scientists to compress data is explained below.
First let us look at the space component. When looking at a picture, it is quite clear that some areas are very similar. The similar areas can be linked and the data grouped together into one reference point. The reference point has to be transmitted with a mathematical representation (vector) that explains to the computer which areas are similar to each other. This reduces the amount of data that needs to be sent.
Secondly, let us analyse the time aspect. Video is a set of images placed one after another and run at 25 or 30 frames per second that gives the illusion of movement and action. To make a video flow seamlessly images that are right after each other are very similar. If we have two images the second one will be very similar to the first, with only a small movement of some parts of the image. Like we do for space, a mathematical relationship can be calculated for the similar areas from one image to the next. The first image can be used as a reference point and for the second we transmit only the vector that explains which pixels have moved and by how much. This greatly reduces the data that needs to be transmitted.
The above techniques are used in single view transmission, with free-viewpoint technology we have a new dimension. We also need to include the space between cameras shooting the same scene. Since the scene is the same there is a lot of similarity between the videos of each camera. The main difference is that of angle and the problem that some objects might be visible from one camera and not from another. Keeping this in mind, a mathematical equation can be constructed that explains which parts of the scene are the same and which are new. A single camera’s video is used as a reference point while its neighbouring cameras only transmit the ‘extra’ information. The other camera can compress their content drastically. In this way the current standard can be extended to free-viewpoint TV.
Compressing free-viewpoint transmissions is complex work. Its complexity is a drawback, mobile devices simply aren’t fast enough to run computer power intensive algorithms. Our research focuses on reducing the complexity of the algorithms. We modify them so that they are faster to run, need less computing power, and still keep the same quality of video, or with minimal losses.
“The road ahead is steep and a lot of work is needed to bring this technology to homes”
We have also explored new ways of reconstructing high quality 3D views in minimum time, using graphical processing units (GPUs). GPUs are commonly used by high-end video games. Video must be reconstructed with a speed of at least 25 pictures per second. This speed must be maintained if we want to build a smooth continuous video in between two real camera positions (picture). A single computer process cannot handle algrothims that can achieve this feat; instead parallel processing (multiple simultaneous computations) is essential. To remove the strain off a main processing unit in a computer processing can be offloaded to a GPU. Algorithms need to be built that use these alternative processing powers. Ours show that we can obtain the necessary speeds to process free-viewpoint 3D video even on mobile devices.
Since free-viewpoint takes up a large bandwidth on networks, we researched whether these systems can feasibly handle so much data. We considered the use of next generation mobile telephony networks (4G). Naturally they offer more channel space, we wanted to see how many users they can handle at different screen resolutions. We showed that the technology can be used only using a limited number of cameras. The number of users is directly related to the resolution used, with a lower resolution needing less data and allowing more views or users. This research came up with design solutions for the network’s architecture and broadcasting techniques needed to minimise delays.
The road ahead is steep and a lot of work is needed to bring this technology to homes. My vision is that in the near future we will be consuming 3D content and free-viewpoint technology in a seamless and immersive way in our homes and mobile devices. So for now sit back and imagine what watching an opera or football match on TV would look like in a few years’ time.
The Bionic Human
Faster, fitter, and flawless? What would it take to build a Bionic Human? Ing. Emmanuel Francalanza delved into research at the Faculty of Engineering to see how Malta could contribute. 3D Art by Jean Claude Vancell
Through the Looking Glass
What’s your favourite game? Pacman? Doom? World of Warcraft? Most of us have spent hours immersed in video games, many still do. Prof. Gordon Calleja studies why and how we get so involved in games. Science writer Dr Sedeer El-Showk found out about Calleja’s latest book and game that are gaining worldwide fame.
The key to networking
I first heard about COST (European Cooperation in Science and Technology, a networking platform for scientists www.cost.eu) way back in 1996 during a pharmacokinetics meeting in Athens. Some participants mentioned that their attendance had been funded by COST. So on my return I contacted the Malta Council of Science and Technology to try and obtain more information. When I learnt that COST funds EU networking I quickly applied to become a member of a COST action (this is what COST calls a network). After bureaucratic leaps and bounds I become Malta’s representative on a COST action. It certainly opened new horizons to me and the networks I formed with top researchers in Europe were unique.
By 2010 my enthusiasm resulted in MCST nominating me as Malta national contact point for COST. It has been of huge satisfaction that in these three brief years Malta’s participation has risen from 6 actions to over 100. Over 150 Maltese researchers take part in COST.
Why is COST so important for Malta?
The complaint I hear most often in Malta, not only in academic circles but also among SMEs (small to medium enterprises), is that research in science is only for the elite, that it is too high brow and that it is not relevant to Malta. COST proves otherwise. What else could link disaster bioethics, to colour and space in cultural heritage to the comparison of European prostitution policies, with submerged prehistoric archaeology? Other links include the quality of suburban building stocks, integrated fire engineering and response, and language impairment in a multilingual society. COST also funds networks across a whole spectrum of research from the humanities to the fundamental sciences including string theory to childbirth in various cultures.
Participating in a COST action involves very simple administrative and funding procedures. For once, our small size is an added advantage since every COST country is allowed to nominate two members to participate in each action, putting Malta COST researchers at par with researchers from much larger countries. Achieving these results has not been easy, since many researchers hesitate and require persistent prodding. There are frequent reminders and one to one meetings to persuade them to participate. It has been a real eye-opener meeting researchers in Malta from different disciplines and learning about their research.
Deciding to participate in COST may seem a small step to some, an added administrative burden to others, while some see it as another travel commitment. COST offers the response to the conundrum of how to overcome our physical (and perhaps in some instances also mental) insularity. You should not let this opportunity pass…
COST in Malta is managed by the Malta Council for Science and Technology. For more information see www.mcst.gov.mt/networking/cost or contact Dr Janet Mifsud, COST CNC, (+356 23402582/2845, janet.mifsud@um.edu.mt) or cost.mcst@gov.mt
A Greener Malta
The facts are clear: Malta has a challenge. It needs to build up a 10% electricity generation from renewables by 2020. Beyond that, it needs cleaner air, cleverer homes, and a consistent power source for its people and economy. The big question is how can we enjoy Malta’s newly won benefits of the developing world without compromising our environment? This challenge motivates researchers worldwide. Malta is doing its bit in environmental engineering: developing green skies, green energy, green homes, and the opportunity for a green Malta.
Greener Skies
Nearly 100,000 commercial flights take off every day worldwide causing 2% of man-made carbon dioxide (CO2) emissions per year. In Malta, over one million tourists visit each year and flights are critical in connecting an island to the outside world. How can we address Malta’s economic needs with a growing public concern on airplane pollution, noise, and contribution towards climate change? A €1.6 billion Clean Sky project funded by the European Commission is trying to make this apparent conflict work. It brings together major European industrial partners, research establishments, and academia to develop breakthrough technologies for the air transport industry. In Malta, the Department of Electronic Systems Engineering is optimising flight paths known as trajectories.
The idea: reduce a plane’s flight path, reduce the time it is airborne, lower CO2 release. Computer algorithms can find a plane’s best trajectory and minimise air pollutants and noise. Malta is handling a part of the software development to optimise flight paths. The purpose of the software platform being developed by the Maltese team is to allow partners to bring together their optimisation models and tools. This will allow the international consortium to solve the complex algorithms that come with flight trajectory problems.
Another project called Clean Flight is tackling local airplane flight paths. Current flight trajectory calculations are based on lowering costs. This does not necessarily mean that these trajectories provide the least pollution for our skies. Clean Flight’s approach is to lower flight costs by being green. Usually these two qualities match: burn less fuel, spend less, pollute less. Commercial aircrafts should have new flight paths for Malta.
Harnessing the winds
Every time we switch on an appliance at home or at our workplace we are consuming energy. And energy means money and pollution. Pollution can be nullified by using renewables. Denmark, famous for windmills, has invested heavily in wind energy. By 2011 it generated around 26% of the total electricity demand through wind farms. Denmark also has one of the lowest electricity prices in the EU.
Wind energy’s success has come with a backlash. The rapid increase in land use has caused public outcry on despoiling views, animal activists are worried about bird deaths, and increased pressure on limited land availability. In Malta land is of premium value. Green and open spaces are limited. Out at sea these problems could disappear and floating offshore wind structures may provide accessibility to deeper waters. Deeper seas have other plusses. Out there, the wind speeds are higher and more consistent, which makes electricity generation more realistic. The flipside is the expense in sending the precious electrical energy back to shore to power homes.
Floating wind turbines may be the key to fulfil Malta’s renewable energy targets. Malta has agreed to a 10% electricity generation from renewables by 2020 with the EU. If the country fails to meet its target it will be smacked with a huge fine.To give more opportunities for the government to reach this target the Faculty of Engineering is pushing new research into wind energy. There are major differences between floating and fixed offshore structures. Waves cause ever changing stresses on the turbine’s structure and bobbing movement could change the turbine blades’ aerodynamics that reduces power output.
The researchers at the Faculty’s Fluids Lab are testing a model floating wind turbine. Till now, the experiments have examined the change in power experienced by a wind turbine’s rotors when bobbing up and down on waves. The data has been inputted into a computer model to simulate large-scale floating wind farms. By simulating the air flow the drop in generation can be better understood. The simulations are based on the application of free-wake vortex methods. Since the air flow changes with the oscillation of the platform and therefore with time, these methods are capable of capturing the changes in the wake formed by the rotor.
Large wind farms face the problem of having generators and gearboxes mounted on each turbine at great cost. Instead the energy generation could be centralised, with individual turbines pumping seawater towards a central station which makes use of a positive displacement pump. This concept would mean that a centralised hydroelectric power station could be located on our shores.
Replacing every wind turbine’s gearbox and generator with a hydraulic pump offers many advantages. It reduces expense, by minimising the number of moving parts’ maintenance costs, and make a lighter turbine. Wind farms that pump water could also be easier to combine with wave energy, energy storage systems, and reverse osmosis plants that use up a big chunk of Malta’s electricity to make drinking water from the Mediterranean.
“Floating wind turbines may be the key to fulfill Malta’s renewable energy targets”
The only way is up
Normally we think of wind turbines as a tall central structure with a generator on top and propeller-style blades powering everything. But this is not the only possibility. Blades can spin around the turbines’ central structure doing away with expensive maintenance costs and complex gears to turn the blades into the wind. These Vertical Axis Wind Turbines (VAWTs) do not need to be oriented into a specific wind direction. Their problem is a requirement for higher wind speeds before they start to spin.
Dr Ing. Pierluigi Mollicone is coordinating a project that is coming up with new design concepts for this type of wind turbine. By working with both local academics and industrial players, a state-of-the-art design has to improve both the starting speed and the capability of controlling the turbine at varying wind speeds. Starting off from a conceptual idea, the design is then detailed and developed in the first step to make a wind turbine. The computer design then needs to be tested for aerodynamics and structural integrity—does it spin well and can it take a beating? The computational model then needs to be translated into a real world structure and tested in a wind tunnel, with further experiments back and forth needed to come up with a new wind turbine.
Malta’s very own windmill: restarted
The Raddiena or Chicago windmill is a well-known sight in rural Malta. These windmills harness the winds to draw water from the water table and irrigate fields. In 2001, 300 windmills were listed across Malta and Gozo. Unfortunately, the introduction of electricity has led farmers to abandon this clean source. Many windmills are gradually deteriorating. Dr Ing. Tonio Sant (Department of Mechanical Engineering) and his team are developing a new wind turbine concept to replace these badly damaged Chicago windmills. Together with the Ministry for Resources and Rural Affairs they are upgrading the rotor design structure’s aerodynamics to improve water-pumping efficiency. At the same time, the researchers want to maintain the original visual appeal of a multi-bladed rotor. The turbine will also produce electricity and be grid-connected. It won’t just pump up water but also provide clean energy.
Green Homes
Malta is covered in houses. Covering their roofs with PV (photovoltaic) panels is a way we could all help by making renewable energy. In the past five years, Malta has seen a drastic increase in PV panel use. Electricity generation is shifting from a centralised power station to our homes. Distributed generation is characterised by small-scale electricity generation, deployed near the point of use: our homes.
Currently our national grid cannot handle large PV installations. The stability of the grid may be compromised leading to power outages. And we all know what being in the dark for a few hours means. No Internet, no TV, no cold drinks in summer. The storage of electric energy can be used to balance the generation and consumption demands for a single household or company. Excess energy generated during periods of high generation can be stored. This stored energy can then be used when supply cannot meet demand, perhaps when using several heaters on a cloudy day.
Microgrids can solve these challenges. These grids are low voltage (electrical distribution within a home) or medium voltage (electrical distribution within a neighborhood) electrical distribution networks designed to supply small electrical loads. They are needed to hook up PV panels to a small community like a housing estate, university, schools, shopping mall, or industrial area. They consist of three major components. The homes equipped with PV or wind turbine installations, systems to store the energy generated, and other electricity users connected to the grid.
Microgrids generate energy near where it will be used. This increases reliability and reduces losses due to long transmission lines. Microgrids can also be used to provide electricity in remote locations unconnected to a main grid. Researchers are developing new methods to reliably operate and control microgrids across an island. They want to implement a low voltage microgrid capable of reliable operation that is connected to the national grid.
Many households have PV panels and solar water heaters. Local researchers are combining the two systems. For a sunny country like Malta, such a system makes perfect sense. One major advantage of a combined system is efficient conversion of concentrated solar energy to heat energy. The homeowner can then flip a switch to either generate electricity or heat water.
A parabolic trough, a curved surface, is used to focus the sun’s rays onto a fluid. The heated fluid can reach temperatures of up to 300°C. Hot enough to power a stirling engine used to generate electricity or pump water.
Greener Seas
The Mediterranean has over 150 million people living on its coast. A quarter of a million fishermen live off its fish. Even closer to home, the sea around Malta sees one third of the world’s shipping. The only way this sea can survive is by knowing how much we are polluting and exploiting it by monitoring it. Then the effect needs to be evaluated and the situation managed by administrators around the Sea to balance development and environmental health.
A study that will help gather information about maritime traffic across the Straits of Sicily is being carried out by the Department of Mechanical Engineering and the University of Catania. By quantifying the emissions produced, they will find out the consequences of these emissions on the local plant and animal life. The project aims at supporting the monitoring of pollution at sea in the Straits of Sicily and so contributing to future legislation at national and European level.
Engineers designed a towfish that will be used to monitor a number of pollutants in the Mediterranean Sea. A towfish is an underwater platform that is towed behind a surface boat and can reach a depth of 50m. The towfish will be equipped with an HD camera that can take images of zooplankton and phytoplankton in order to study colonies that exist in the Straits of Sicily. Another HD camera will be used to monitor swarms of jellyfish and their location.
A Green Malta
Pollution bothers everyone with dirty atmospheres and smelly odours. Pollution also makes us sick and causes many health problems including birth defects, and burdens health institutes. We all have a role to play to protect and safeguard our environment. Whether it is our skies, seas, or our homes we all have to do our part. A greener Malta means a greener future for all of us.
In 30 years’ time the electric energy we use in our homes and at the workplace will come mainly from renewable energy sources. We will all be driving electric vehicles. The familiar black clouds of smoke from dirty engines will be a thing of the past. But these advances in technology will not be possible without government funding, industrial collaboration, and the sweat of engineers and researchers to find exciting solutions to power nations and our green homes.
Watch more here: https://www.youtube.com/watch?v=VwCNHvD2gqY
KSU joins list of donors
In a typical case of charity beginning at home, the Kunsill Studenti Universitarji (KSU) has donated €1,000 towards the research trust of the University of Malta. Speaking during the presentation of the donation, Mr Mario Cachia, former president of the KSU pledged that the KSU shall venture to promote the objectives of the Trust among the students it represents, and encourage them to support it, even by organising activities to raise funds for specific future research.
Can you die of boredom?
A tricky question since boredom is a mental state. Usually it is triggered by an uninspiring, monotonous environment and/or certain brain chemicals like dopamine (more on dopamine). People who produce less dopamine, or are less sensitive to it, are bored more easily.
People bored for a very long time can suffer from clinical depression, which surely reduces lifespan. Other boredom sufferers have ADHD (attention deficit hyperactive disorder) and extreme ways of combating boredom can be equally dangerous. They could abuse drugs and alcohol or seek thrills in risky sports. Others could become sexually promiscuous. All of these behaviours reduce lifespan.
Send your questions to think@um.edu.mt and we’ll find out if it’s the truth or just a fib!