Skip to content

Robot Maps, Robot Moves, Robot Avoids

Facebook
Twitter
LinkedIn

Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much.

Claire Farrugia (supervised by Dr Marvin Bugeja) developed an algorithm that allows the robot to move on its own and build a map of its environment while continuously estimating its location within this map. A system known as Active-SLAM (Simultaneous Localization and Mapping), allows the robot to explore an area on its own by mapping its surroundings and figuring out where it is. This system is more efficient than previous systems (regular SLAM) where the robot is moved manually with a joystick.

Farrugia focused on answering how a robot gets from point A to B, which is more complicated than it sounds. The robot needs to map its area, avoid obstacles, and steer away from obstacles placed in its path like a human on a stroll.Farrugia used a two-wheeled robot which could sense its surroundings with an on-board laser (LIDAR) and sonar. She combined the ultrasound and laser data to make a more accurate map and for the robot to pinpoint its own position on it.

The robot then needs to decide where it wants to go. Once it has decided, it needs to plan its path around any obstacles to get there.

To make the robot move safely around the lab on its own, Farrugia built the D*Lite algorithm, which helps a robot move towards its destination in the shortest distance, while dodging obstacles quickly to return to its original path. Farrugia could follow the robot’s movement using a custom-built software package that let her command the robot to whichever destination she desired. 

Algorithms like Farrugia’s, that allow robots to explore areas on their own steam, are necessary for robots that need to go to areas that are risky or expensive for people to go. Robots that can plan flights or map abandoned underground mines and deep seas have already been developed.

This research was performed as part of the course in Bachelor of Engineering (Hons) within the Faculty of Engineering at the University of Malta. It was presented at the IET Present Around the World (PATW) Competition 2014 organised annually by the Malta Group of Professional Engineering Institutions (MGPEI).

Author

More to Explore

URNA: Bonding Flame

URNA is Malta’s response to the 5th edition of the London Design Biennale 2025. THINK speaks to curator Andrew Borg Wirth and Arts Council Malta Internationalisation Executive Romina Delia to learn how this project seeks to create a connection between souls when experiencing a loss.

MaltaHip Project: When Ideas Become Reality

The earliest recorded attempts at hip replacement date back to 1891. At the time, ivory was proposed to replace the femoral heads of patients whose hip joints had been destroyed by tuberculosis. Since then, everything changed. THINK speaks to the MaltaHip Team to learn about their innovative hip replacement technology.

HUMS ‘The Sun’: Bridging the Sciences and Humanities in a Cross-Disciplinary Exploration

The Humanities, Medicine, and Science (HUMS) Symposia at the University of Malta offer a unique platform where experts from diverse fields come together to explore a single theme from multiple disciplinary perspectives. This academic year, the HUMS first event, entitled ‘The Sun’, provided an interdisciplinary deep dive into the scientific, cultural, and existential significance of our closest star.

Comments are closed for this article!