Skip to content

Redesigned hip joints need a simulator

Facebook
Twitter
LinkedIn

People are living longer than ever. But a long life has its price. With age come more diseases and health issues, such as hip problems that can limit a person’s mobility. 

Hip replacement procedures have become common, although implants have a lifespan too. It might happen that a hip replacement you get at 60 needs to be replaced at 75. This is not the ideal scenario.

To minimise these cases, researchers are testing new materials and designs to prolong prostheses’ lifespans. These potential solutions need to be tested, but each test costs tens of thousands of euro. Enter, the University of Malta’s hip joint simulator.

Hip joint simulator in all its glory.

The hip joint simulator is a machine that replicates the joint movements and loads imposed on the human hip. To do so, the simulator uses three stainless steel frames, each of which can be controlled independently using motors. These motors act as the ‘muscles’ of the hip, programmed to replicate the walking cycle during testing.

When it comes to simulating load and forces, a mechanism can load the implants with weights of up to 300kg in a fraction of a second. This emulates what happens while walking, when the weight of the body rests on one leg due to the body’s shift in the centre of gravity. While running, inertial forces can cause the hip to sometimes take five times a person’s body weight.

Finally, to simulate the environment inside the human body, researchers use a specialised solution that mimics the bodily fluids surrounding the hip joint. They even warm the fluid to imitate body temperature. 

The hip joint simulator forms part of the MaltaHip project that intends to radically redesign hip implants to give them the longer lifespan patients want and need. Watch this space for more.  

The MALTAHIP project is funded by the Malta Council for Science and Technology through FUSION: The R&I Technology Development Programme 2016 (R&I-2015-023T).

Author

More to Explore

Exploring Additional Functionality for Home Battery Storage Systems

Using renewable energy, like solar photovoltaic, to generate electricity for direct use and to electrify other sectors significantly reduces greenhouse gas emissions. Yet, the intermittent nature and dependence on solar irradiation – the amount of energy the sun puts out at a time – complicate the operation of the power network. Home battery storage systems can assist in multiple ways.

Unlocking Knowledge: The Power of Open Access to Research Data

Research Data Management offers researchers a way to safeguard their findings and a pathway to collaboration, efficiency, and greater recognition for their work. At its core, research data forms the foundation of every scholarly discovery, making Open Access essential for more transparent and reusable research.

Interpreting Through The Ages: Past, Present and Future

Advances in technology and study offer improvements to the practice of interpreting, as evidenced by the recent installation of new interpreting equipment at UM’s Interpreters’ Lab, overseen by Dr Amy Colman. Her mission, however, is much broader as she seeks to share the story of interpreting itself as a practice with a long history.

Comments are closed for this article!