Skip to content

Lighter and Stronger Planes

Facebook
Twitter
LinkedIn

Bonnie Attard talks about the aerospace industry and how it can be improved.

The price of fuel is a large cost burden on the aerospace industry. A lighter plane means cheaper flights, increased aircraft range, and less environmental pollution. Titanium alloys are replacing steel for components such as landing gear bearings and wing frames to reduce overall weight.

Titanium is still mainly used for static load-supporting structures such as landing gears, and seat and aeroplane frames mainly because, when sliding against other surfaces, the material wears down quickly. It is not ideal for moving parts such as bearings and gears. Hardening the surface can mitigate the problem but current techniques such as plasma nitriding are very expensive. Bonnie Attard (supervised by Dr Ing. Glenn Cassar, in a research collaboration between the Department of Materials and Metallurgy Engineering and the Technion Institute of Technology in Israel) has studied a more economically viable surface hardening process: Powder Immersion Reaction Assisted Coating (PIRAC) nitriding to protect titanium surfaces. The process is simple: components are immersed in an unstable nitride powder and heated in a furnace. The heat decomposes the nitrogen in the powder and forms highly reactive monatomic nitrogen. This reactive nitrogen is absorbed onto the titanium surface and reacts to form titanium nitride—a very hard ceramic compound at the surface that protects the component from being worn down during use.

In her research, Attard found that the PIRAC treatment significantly improved the dry-sliding behaviour of two titanium alloys Ti-6Al-4V (the most commonly used titanium alloy) and Timetal 834 (used in compressors for aeroplane engines) by forming a hard and very adherent ceramic surface layer. This treatment allows the components to handle prolonged usage of moving parts under high pressures. These treatments could increase the uses of titanium alloys in aircraft to reduce weight and cost. •


This research was performed as part of a Master of Science in Engineering at the Faculty of Engineering, University of Malta. It is partially funded by STEPS (the Strategic Educational Pathways Scholarship—Malta). This scholarship is part-financed by the European Union—European Social Fund (ESF) under Operational Programme II—Cohesion Policy 2007–2013, ‘Empowering People for More Jobs and a Better Quality of Life’. The testing equipment was financed by ERDF (Malta), Developing an Interdisciplinary Material Testing and Rapid Prototyping R&D Facility (Ref. no. 012).

Author

More to Explore

Our Post-Truth Reality

Post-truth populism has secured a powerful mandate in the United States of America. This reflects a trend that extends through the world’s liberal democracies and will invite global imitation. In this opinion piece, Jonathan Firbank describes how post-truth populism works, why it works, and why the American election might show us how to fight it.

AGORA: Elections 2024 – Youth Absence and the Far Right Surge

During the run-up to the European Parliament Elections, Prof. Mario Thomas Vassallo grilled two MEP candidates on AGORA, a political talk show broadcast on Campus 103.7. Against the backdrop of numerous elections around the globe, a lack of youth representation, and the rise of the far right, the discussion got us thinking.

Smooth Operator: Improving Surface Finish in Additive Manufacturing

While the advent of 3D metal printing may redefine how designers develop parts for products, the process itself is not without faults. Andre Giordimaina speaks with THINK about the GLAM Project, which aims to improve the process of 3D metal printing by optimising the finish and performance of designed parts.

Comments are closed for this article!