Skip to content

Moving wheelchairs with your thoughts

Facebook
Twitter
LinkedIn

Brain to computer interface (BCI) devices can read a person’s thoughts and turn them into commands to move objects. They can give freedom to people suffering from movement impairments. Rosanne Zerafa (supervised by Tracey Camilleri) developed a system that detects a person’s brain patterns while they are thinking of moving a particular part of their body and translates them into commands to move a cursor. The research has the potential to remove considerable lag between thinking of moving an object and it actually moving.

Brain activity can be detected using an electroencephalogram (EEG), which is made up of a cap with electrodes that touch a person’s scalp. The electrical activity captured by the electrodes is then interpreted by a software program to give commands to move a robotic arm, wheelchair, or other assistive device.

Zerafa tested the system on four individuals who were thinking about moving their left or right hand. Different brain patterns from these two tasks could be identified and translated into left or right movement of a cursor on a computer screen.

Taken together, the software could be further developed and tested to improve it for real-world needs such as assisting people with movement difficulties and even gaming.

This research was performed as part of a Bachelor of Engineering (Honours) at the Faculty of Engineering. 

Author

More to Explore

Exploring Additional Functionality for Home Battery Storage Systems

Using renewable energy, like solar photovoltaic, to generate electricity for direct use and to electrify other sectors significantly reduces greenhouse gas emissions. Yet, the intermittent nature and dependence on solar irradiation – the amount of energy the sun puts out at a time – complicate the operation of the power network. Home battery storage systems can assist in multiple ways.

Unlocking Knowledge: The Power of Open Access to Research Data

Research Data Management offers researchers a way to safeguard their findings and a pathway to collaboration, efficiency, and greater recognition for their work. At its core, research data forms the foundation of every scholarly discovery, making Open Access essential for more transparent and reusable research.

Interpreting Through The Ages: Past, Present and Future

Advances in technology and study offer improvements to the practice of interpreting, as evidenced by the recent installation of new interpreting equipment at UM’s Interpreters’ Lab, overseen by Dr Amy Colman. Her mission, however, is much broader as she seeks to share the story of interpreting itself as a practice with a long history.

Comments are closed for this article!