Skip to content

DNA spacewalk

Share on facebook
Share on twitter
Share on linkedin

Can bacteria grow in space? How do cells respond to radiation? Geneticist Prof. Joseph Borg realised that to find out, he must make some friends outside his discipline.

Every day, I (Prof. Joseph Borg) look inside human cells, aided by the state-of-the-art equipment we have at the University of Malta (UM). But I have always been interested in fundamental questions in science, like ‘How and when did life emerge on Earth?’, ‘How did our solar system and life evolve, and how will it develop in the future?’ and ‘Is there life on other celestial bodies?’ None of these can be answered by one discipline alone.

It was February 2018 when I reached out to Prof. Kristian Zarb Adami, who directs the Institute of Space Sciences and Astronomy (UM). I told him that I was a molecular biologist with a slight inclination for astronomy. When we met, we found that we have more interests in common than the highly fragmented world of science often leads us to think. Research in our fields requires interaction and the exchange of ideas. 

Joseph Borg
Prof. Joseph Borg. Photo by Luke Saliba

Soon we were joined by astronomy PhD student Josef Borg, whose background was in Biology and Chemistry, maths and physics student Maria Aquilina, as well as applied biomedical student Leah Meekers.

Our meeting ground is the science of astrobiology. We spent hours discussing our interests and eventually designed our very first experiment – emitting a 2.8 GHz (10.7cm-long) radio frequency signal and continuously bombarding two small plates containing harmless microorganisms (bacteria): one for 24 hours and one for 48 hours. The question was very specific and simple enough: will such exposure to radio waves change the bacteria’s DNA makeup?

This very basic scientific experiment served to get the biologists and astronomers working closer together and learn each others’ tools and techniques. I learnt more about radio waves, types of radiation, and the anechoic chamber (a room that completely absorbs sound) used for such studies. The astronomers learnt more about genetics, DNA, and cell biology. 

When the time came to conduct our experiment, we took the bacteria we had grown on nutrient agar plates and divided them: four were left in standard laboratory conditions as control samples whilst the other four were placed as test samples inside the anechoic chamber. Two plates stayed for 24 hours, while another set remained there for 48 hours.

The question was very specific and simple enough: will such exposure to radio waves change the bacteria’s DNA makeup?

I was back in my scientific comfort zone. We extracted bacterial DNA and tested its quality and integrity; we quantified it with the standard tools available in my molecular biology laboratory. Once we had the DNA from both test and control samples, we sent them off to the Gene Core Facility at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. At this facility, the bacterial DNA we extracted was subject to whole genome sequencing that essentially enabled us to read all of the bacteria’s 4.6 million DNA nucleotides.

We could finally compare our samples and determine whether there were any meaningful differences between the bacteria exposed to radiation and those that weren’t. Belinda Giardine from Penn State University helped us with bio-informatic studies to compare DNA variants between test and control samples. There were no obvious or meaningful differences between the samples, which concludes that our bacteria suffered no harm after being subjected to radio waves at a frequency of 2.8 GHz for up to two full days!

We want to continue joint experiments to learn how cells behave and adapt to increased radiation exposure. These findings can lead us to a better understanding of cancer and tumour biology – which cells respond best to radiation therapy? What is the minimal radiation dose that can achieve therapeutic effect with the least damage to cells? But we will also be equipped to ask more ambitious questions: how can we prolong human presence in space and space missions? Can we genetically manipulate human cells to withstand solar radiation? Can we increase the length of stay in space, making missions to the Moon and Mars and back more feasible and realistic?

Our bacteria suffered no harm after being subjected to radio waves at a frequency of 2.8 GHz for up to two full days!

To build on the good work and prevent a counterproductive fragmentation of existing resources, the group now plans a platform for research, training outreach, and dissemination in astrobiology, open to researchers from various backgrounds. The Institute for Space Sciences and Astronomy provides an excellent platform for this to take place with its small but steady flow of ambitious ideas for research. The group are now planning small biological and chemical experiments that can fit into a small cube and be launched under low earth orbit conditions to determine what happens to cells at both DNA and RNA level. 

Having formed this young group, we hope to move the frontiers of understanding life in our galaxy. We have come to realise what Carl Sagan meant by ‘The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.’ 


More to Explore

Fostering Creativity and Community: The ART Connect Project at the University of Malta Library

The Library is, in many ways, the beating heart of the University of Malta (UM). The pulse of intellectual life can be felt most profoundly amongst the quiet shelves lined with books and the many students and academics lining the Library’s work desks with their noses deep in their projects. In this sense, the Library is also symbolic of the University’s overall health and vitality, so it is important to balance serious work with serious play.

The evolution of the ART Connect Project has been a journey of dedication and transformation. Inspired by the vision of new librarians and a desire to revamp the Library’s decor, what was once a seed of an idea has now matured into a vibrant platform for artistic expression, collaboration, and community building.

The ART Connect Project aims to connect people through creativity, foster collaboration, and transform spaces, inviting artists and art enthusiasts to celebrate the power of art.

Meeting Challenges Halfway at the Malta Book Festival 2023

Malta boasts 58 registered publishing entities, hosting hundreds of authors writing books across a wide swathe of genres and formats. These numbers emerge from an NSO survey into the book industry, conducted on the basis of the year 2021. Effectively, we could say that there are ‘more authors than churches’ in Malta, with over 700 authors populating the National Book Council’s database.

This hints at a varied industry, the stakeholders of which all fall under the remit of the National Book Council, which seeks to assist, support, and represent Maltese authors and publishers, as well as related industry stakeholders such as translators and illustrators. While the Maltese context does have its own particularities, neither is it immune to the industry’s wider, global realities, a case in point being the price hike on paper caused by the war in Ukraine, which continues to be felt across the board. Maltese publishers must also bear the brunt of this unfortunate phenomenon.

The National Book Council continues to advocate for increased governmental support to aid publishers, whether in this particular challenge or others, and it also offers direct financial aid through the Malta Book Fund, which last year issued a grand total of €120,000 to various industry stakeholders, targeting projects of high cultural value which may not have a straightforward route to market success.

But while some challenges may be met halfway through financial incentives, others require a systemic — or cultural — shift in attitude from all parties involved, which takes a certain degree of workshopping to be borne out. The slow uptake of ebooks bears pondering (the NSO survey saw 146 new ebooks issued in Malta in 2021, contrasted with printed counterparts of 418 in the same year), as does the worryingly high number of authors published without adequate contracts in place.

Maximising Solar Panel Efficiency: The DustPV Project

The DustPV project, led by Prof. Ing. Joseph Micallef, aims to determine the optimal timing for cleaning solar panels using innovative sensor technology and weather data analysis. By addressing the challenges of dust accumulation on photovoltaic panels, the project seeks to enhance solar panel performance and contribute to Malta’s renewable energy goals.

Comments are closed for this article!