Skip to content
Knee pain

3D-Printed knee implants for longer lifetime

Facebook
Twitter
LinkedIn

Student_robertJCV-0523By Robert Zammit

One of the most common causes of total knee replacements is osteoarthritis, a disease which affects around 40% of Maltese senior citizens. The rise in age expectancy and obesity, compounded by injuries to patients, will see these numbers grow. All of this is expected to increase total knee replacement surgeries by 362% by the year 2030. The need for knee implants to have a longer lifetime is real.

Currently knee implants consist of three components: the tibial component, tibial insert and femoral component, with metal-on-polymer articulation that is known to have poor wear resistance. This not only leads to implant failure due to excessive wear after a decade but studies also show that 19% of knee replacement patients are dissatisfied with the result of their surgery. One of the main reasons for this is that modern implants do not offer optimal fit, creating problems such as pain and motion limitation, which results in the knee implant being replaced.

I (supervised by Dr Arif Rochman) designed a knee implant to improve on the shortcomings of contemporary knee implants. The principal research aim was to study the design of 3D-printable patient-specific knee implants that have a longer lifetime. This was done by designing a patient-specific knee implant with two metal mounting components and two polymer articulating components, meaning that polymer-on-polymer articulation was used.

The experiments showed that high performance polymers experience lower wear rates compared to conventional materials. Innovative assembly features were designed to join the polymer articulating components with metal mounting components for easy assembly and disassembly. Similarly, an improved fixation technique was used to secure the metal mounting components with the patient’s bones. Stress analyses were then completed on the newly designed knee implant, which ensured that failure will not occur when implanted. Besides eliminating pain and motion limitation, the knee implant is expected to provide a more natural feel as it replicates the original knee joint geometry. Cowles, a patient who underwent surgery using a patient-specific knee implant says that ‘if I didn’t see the scar on it, I would assume it was my normal knee’.


The implants’ metal mounting components were fabricated using the 3D printing facilities at the University of Malta, while the polymer articulating components were produced at Trelleborg Sealing Solutions Malta. This research was carried out as part of a Master of Science in Engineering (Mechanical), Faculty of Engineering, University of Malta.

Author

More to Explore

INNOVATION

‘Fun, exciting and challenging’ is how Federica, NOVA logistics officer, described her undergraduate experience with UM’s Department of Digital Arts. Now in their final year, the Bachelor of Fine Arts cohort, guided by Dr Trevor Borg, is dotting all the i’s and crossing all their t’s in preparation for their thesis exhibition. THINK took the opportunity to talk with a few members of the logistics team to learn what NOVA is all about.

Exploring Additional Functionality for Home Battery Storage Systems

Using renewable energy, like solar photovoltaic, to generate electricity for direct use and to electrify other sectors significantly reduces greenhouse gas emissions. Yet, the intermittent nature and dependence on solar irradiation – the amount of energy the sun puts out at a time – complicate the operation of the power network. Home battery storage systems can assist in multiple ways.

Unlocking Knowledge: The Power of Open Access to Research Data

Research Data Management offers researchers a way to safeguard their findings and a pathway to collaboration, efficiency, and greater recognition for their work. At its core, research data forms the foundation of every scholarly discovery, making Open Access essential for more transparent and reusable research.

Comments are closed for this article!